Oxygen transfer and consumption in a thiosulfate oxidizing bioreactor with sulfur production.

نویسندگان

  • A González-Sánchez
  • S Alcántara
  • E Razo-Flores
  • S Revah
چکیده

AIMS To evaluate the contribution of oxygen transfer and consumption in a sulfoxidizing system to increase the elemental sulfur yield from thiosulfate oxidation. METHODS AND RESULTS A 10 l thiosulfate oxidizing bioreactor with suspended cells operating under microaerophilic conditions and a separated aerator with a variable volume of 0.8--1.7 l were operated with a consortium containing mainly Thiobacillus sp. that oxidizes several sulfide species to elemental sulfur and sulfate. From the gas-liquid oxygen balance, the k(L)a was estimated under different operation conditions. A k(L)a of around 200 h(-1) favoured elemental sulfur production and can serve as scale-up criterion. It was further shown that more than 50% of the oxygen fed to the system was consumed in the aerator. CONCLUSIONS The performance of the sulfoxidizing system can be improved by controlling oxygen transfer. SIGNIFICANCE AND IMPACT OF THE STUDY The proposed method for the k(L)a determination was based on the oxygen balance, which incorporates the oxygen concentrations measured in the liquid in steady state, reducing the interference of the response time in the traditional non-steady state methods. This approach can be used to optimize reactors where microaerophilic conditions are desirable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partial thiosulfate oxidation by steady-state continuous culture in a bioreactor-settler system

The design, characterization, and performance of a bioreactor-settler system that allows the partial biological oxidation of reduced sulfur compounds is described. The design incorporates the physical separation of the aeration from the bioreactor. The reactor has a dynamic flow zone and a static zone. Steady state thiosulfate-oxidizing cultures were established at different O2/S2O32− molar rat...

متن کامل

Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria - evolution of the Sox sulfur oxidation enzyme system.

The soxB gene encodes the SoxB component of the periplasmic thiosulfate-oxidizing Sox enzyme complex, which has been proposed to be widespread among the various phylogenetic groups of sulfur-oxidizing bacteria (SOB) that convert thiosulfate to sulfate with and without the formation of sulfur globules as intermediate. Indeed, the comprehensive genetic and genomic analyses presented in the presen...

متن کامل

Comparison of Different Loop Bioreactors Based on Hydrodynamic Characteristics, Mass Transfer, Energy Consumption and Biomass Production from Natural Gas

The performance of a forced-liquid Vertical Tubular Loop Bioreactor (VTLB), a forced-liquid Horizontal Tubular Loop Bioreactor (HTLB) and a gas-induced External Airlift Loop Bioreactor (EALB) were compared for production of biomass from natural gas. Hydrodynamic characteristics and mass transfer coefficients were determined as functions of design parameters, physical properties of gases as ...

متن کامل

Growth of Acidithiobacillus Ferrooxidans ATCC 23270 in Thiosulfate Under Oxygen-Limiting Conditions Generates Extracellular Sulfur Globules by Means of a Secreted Tetrathionate Hydrolase

Production of sulfur globules during sulfide or thiosulfate oxidation is a characteristic feature of some sulfur bacteria. Although their generation has been reported in Acidithiobacillus ferrooxidans, its mechanism of formation and deposition, as well as the physiological significance of these globules during sulfur compounds oxidation, are currently unknown. Under oxygen-sufficient conditions...

متن کامل

Thiosulfate-dependent chemolithoautotrophic growth of Bradyrhizobium japonicum.

Thiosulfate-oxidizing sox gene homologues were found at four loci (I, II, III, and IV) on the genome of Bradyrhizobium japonicum USDA110, a symbiotic nitrogen-fixing bacterium in soil. In fact, B. japonicum USDA110 can oxidize thiosulfate and grow under a chemolithotrophic condition. The deletion mutation of the soxY(1) gene at the sox locus I, homologous to the sulfur-oxidizing (Sox) system in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Letters in applied microbiology

دوره 41 2  شماره 

صفحات  -

تاریخ انتشار 2005